Feeds:
Posts
Comments

Posts Tagged ‘PowerWorld Simulator’

My second “lab” for ECE4464: Power Systems II studied the effects of distributed generation (in particular, a large-scale wind turbine generation project) on the power system. Like ECE3333 (Power Systems I), this course is being taught by Prof. Rajiv Varma, Ph.D.

Using PowerWorld‘s Simulator software, we connected a large four-reactor nuclear generation plant (750MW per reactor, constant output) via two parallel transmission lines with a large city (modeled as an infinite bus). At the midline between the nuclear reactors and the large city, a transformer is installed at the midline bus to supply a different voltage to a nearby town. This town is near the proposed connection point of the Wind Turbine Generation (WTG) project; this project has a peak output of 85MW.

From the objectives:

In this lab, our objective is to study the potential impact of integration of distributed generation (in particular, a wind farm) using the PowerWorld Simulator software.  We simulate a very large capacity plant (a nuclear plant consisting of four reactors producing 750 MW each).  Because these reactors are large, they will provide some voltage regulation by supplying or consuming MVARs.

The nuclear plant serves a large city via two parallel transmission circuits, as well as the smaller city at the mid-line of one of these lines.  To simplify this lab, we model the large city as an infinite bus, which consumes any excess power generated by the plant.

In this manner, we can explore various phenomena resulting from distributed generation systems like wind farms, including the effects on power transfer and power system stability.  This lab provides insight on two very important issues in power systems, notably, the addition of distributed generation and the challenges involved with electrifying remote communities.

For my full report, see: Power Systems 4464 Lab 2 (PDF). Note that the small town bus has a constant 20Mvar reactive power demand, with a 40Mvar (nominal) shunt capacitor installed initially. Some modifications are made to the compensation scheme as part of the study and report.

Advertisements

Read Full Post »

Recently, I completed my first “lab” for ECE4464: Power Systems II. Like ECE3333 (Power Systems I), this course is being taught by one of the most inspiring professors I have ever had, Prof. Rajiv Varma, Ph.D.

Using PowerWorld‘s Simulator software, we repeated one of our basic labs from ECE3333 as an introduction to computerized modelling of power systems. We connected a single synchronous machine to an infinite bus across a 600km, 1000MW-SIL power line.

It is simplest for me to just lift the objectives from my lab report:

In this lab, our objective is to simulate a simple single machine infinite-bus configuration using the PowerWorld Simulator software.  We design a local generator system (a synchronous generator) having a nominal generation capacity of 500MW and with no predefined peak generation (that is, the generator is modelled as having infinite generation capability).

In this manner, we can explore various phenomena like power transfer, power system stability and the effect of shunt compensation on the midline.  We model a 600km span of transmission line with a shunt compensation device installed at the midline (300km from both ends) and determine the stability limit with and without this compensation device enabled.

Please see the following images, which show the simulation being run in PowerWorld:

500 MegaWatt generation, no compensation

500 MegaWatt generation, no compensation

500 MegaWatt generation with Synchronous Condenser Compensation

500 MegaWatt generation with Synchronous Condenser Compensation

For my full report, see: Power Systems 4464 Lab 1 (PDF). Note that the synchronous condenser installed at the midline is a Switched Shunt Compensation unit. I thought the standard inductor/capacitor schematic symbol looked a little boring, so I overlaid a synchronous condenser on top of it.

Read Full Post »